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l'.vov 
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The thermal stresses and displacements that co~ur in an elastic hollow circular cylinder made of ceramics, when there is convective 
heat exchange are determined. The dependence of the parameters of the thermally stressed state on the radial coordinate is 
investigated under difforent heat-exchange conditions and ratios of the cylinder radii. The results obtained are used to interpret 
the thermcelastic behaviour of heat-sensitive ceramic tubes when the temperature conditions change. 

Tubes and other cylindrical articles with an axisymmetrical temperature distribution are analysed using well-known 
methods [1-3]. However, there is a considerable difference between the behaviour of circular cylinders made of  
heat-seusitive and non-heat-seusitive materials. When there is uniform heating or cooling of  an isotropic non-heat- 
sensitive hollow cylinder with a free surface (ignoring the temperature dependence of the thermoelastic properties) 
no stresses occur in i¢ and all its dimensions change by the same amount. When the temperature changes in a heat- 
sensitive body its internal and external radii may both decrease and increase. 

The problem of the thermoelasticity of  an infinite plate of thick polycrystailine A1203, f r ~  from external forces 
and heated asymmetrically was derived in [4]. Here the dependence of  the thermal conductivity of the material 
on temperature in the range 100-700°C was taken in the form [5] 

X,(t)= ao +at/t (1) 

where a0 andal are omstants and t is the temperature ofthe body. When 100~ ~ t ~ 600~C, Eq. (1) is approximated 
quite well by the expression 

~.t(t)=a/t ,  a= l17 ,  lXl02 W/m (2) 
Under practical ccmditions ceramic structural components undergo heating and cooling. In order to investigate 

the effect of the heat sensitivity of a material, specified by (2), on the nature and value of the temperature stresses 
in a cir~llar cylinder of  internal radius R1, external radius R 2 with a side surface free from stresses, subjected to 
convective heat exchange, we will consider the corresponding static problem of thermoelasticity. 

The steady temperature field is found by solving a boundary-value problem for the heat-conduction equation 

l d  dt 
r-~r[r~.t(t)-~r]=O (3) 

d t  
r = R~ :XAt)-~--cx ~ (t -t I ) = 0 (4) 

ar 

r= R2:~.t(t)~r +{Z2(t-t2)=O 

where a l  and 0.2 are the heat-transfer coefficients from the surfaces r -- R1 and r = R2, respectively, and tl and t2 
are the temperature~ of the external media surrounding these surfaces. 

Integrating Eq. (3) twice and ~kin$ into account the boundary conditions (4), we obtain the solution of the 
heat-conduction problem in the form 

o = ~-" (5) 

. r ate:0 • . t l  
O= t'to Y=O0-~Bi l '  P ~'I' O° ~'o Bi!= a 
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where to is the temperature of the unstressed and unstrained state, and K is a dimensionless constant of integration 
which is the solution of the transcendental equation 

(Bi 2 + K)Op~ + ~¢ - Bi 2 - 0 
(6) 

=R2, O=t---2, Bi 2=a2R2t2 ~- Bi2 
P2 ~'1 t! a ' Bi I 

The thermal-stress state of the system is defined by the equations [6] 

l_ . ,> °rr (l+v)(l-2v) t ar" rj J-:~v 
E(t) [ du u] E(t) 

= ~- v~+(l-v)-- - O(t) 
o ~  (1 + v ) (1 -2v)  dr r l - 2 v  

t 

ozz - v(orr + o w ) -  E(t)O(t); O(t) = f a  t (~)~  
to 

(7) 

where O(t) is the purely thermal strain, E(t) is Young's modulus, at(t) is the temperature coefficient of linear 
expansions, v is Poisson's ratio, and u is the component of the displacement vector (the radial component), which 
satisfies the equation 

d du v d u ..~r[E(t)..~rl+~_v.~[E(t)r]. j [ j l-2vE(t)(du u, l+vd 
l----v "~ ~ d r - r )  = ~ - v ~ r  [E(t)O(t)] (8) 

Young's modulus for an oxide ceramics, for example, is quite adequately described by the formula [7, 8] 

E(t) = Eolt (9) 

where E0 is a certain constant, whereas the temperature coefficient of linear expansion in the 100-700"C temperature 
range is practically constant; however, to generalize the solution of the problem we will assume that it may vary 
a s  

at(t) = oJt, a = const (10) 

Using (5), (9) and (10) we can reduce the equation of equilibrium in displacements (8) to an equation which is 
related to Bessel's equation [9] 

d 2u 1 du 2 u 
dr 2 + (K + 1) r ~ - - L  ~-=f(r) (11) 

1 -v  ' f ( r ) = a l - v  rL  T o - /  

The general solution of Eq. (11) wifl be sought in the form [10] 

u=u+ +u_. u± =(C= ±Iff(F=)~k*d~)r I-/~ 

~1. K~'~+iL 2, k= I(K::I;~I.)/2-t.I 

where C+ and C_ are constants, determined from the boundary conditions 

Or,(r= Rl) = O,r(r = R2) =0. 

After satisfying the boundary conditions using (7) for a radial displacement and the components of the thermal- 
stress tensor we obtain equations which, in dimensionless variables, have the form 

-P2 p-k_ +(1 + v)[ln(OoTP-=) + (1_ v)0¢ + 2)_ 1] 
P0 ~. a+ a_ (12) 

p~ 1 k ~, _p~_ )p-k_ 1+ 1} 
op ='0-'~o~ {~o'o [(I - P2- )P- -(P; 
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IC o~=Op+l~P0---- ~, oz=2vop+~T[Icv-ln(OoTP-l:)] 
- (I- v)(It :[:g)+2v U= u 

0o = p ~ - l ,  a±- 2(I +v) ' aR I 

ojjto 
o / =  E0Ct ( j=pJp ,z )  

If we assume that the thermoelastic characteristics are independent of temperature, i.e. we put 

E(t) = E = const, cxt(t) ffi o~ t = const 

in (9), we obtain, insltead of (13) 

oo  = B(B_ _p_~)_2  l - v  
1 - 2 v  

o¢ = B(B + - ( I - K ) p - ~ ) - 2 ~ ,  o z = V(Op + o r ) - 0  

2-~ " -i¢ -2 
B =  T B + - l - P 2  -I- 1 -02  ( 0 I o j j f l - v )  

2 - , : '  - l - -Ts ; i -  J ' ° J :  EIxtt O 

(13) 

(14) 

The solution of  th~ problem in this formulation was obtained previously in [11] assuming that a constant heat 
flux is given on the internal surface of the cylinder. 

If, in addition to (14), we assume that the thermal conductivity is constant, the solution of the thermoelasticity 
problem in this case .can be written as follows: 

0 =: O0[D(Bi~ln 0 - 1) + 1] 

O . = - I O o D B i ~ [  0 2 . ( ~ 1  + l ) l n p 2 + l n p + l ]  
2 L'-o Lo  ) " J 

o z = v(op + o e ) -  0 

(0- I)K•02 ¢xiR i D:=l+Bi~ino2+gap2, K.=~-J-, Bi;=---~-- t (i=1,2) 

When carxying out numerical experiments the constant r in each case is found from Eq. (6). Values of • x 104 
are given in Table I far some combinations of the criteria Bil and Bi2 (g ffi 5, go -- 2). 

When carrying out calculations using Eqs (12) and (13) we took the following values: v ffi 0.233, go ffi 2 and g 
= 5, which corresponds to the case when both boundary surfaces are heated. The continuous curves in all the figures 
correspond to the values Bil ffi Bi2 = 1, the dashed curves correspond to Bil ffi 10 and Bi2 ffi 0.1, and the dash-dot 
curves correspond to Bil = 0.I and Bi2 -- 10. 

In Fig. I we show the results of calculations of the dimensional radial displacement. When a hollow circular 
heat-sensitive cylinder is heated the displacements on the external and internal surfaces have the same sign, but 
they are greater on the external surface. They decrease when 02 increases, but they increase when the criterion 
Bil is reduced and Bi~ is increased; for different values of the heat-transfer coefficients the radial displacements 
are practically the stone for all P2. 

In Figs 2 and 3 we ,;how the components of the thermal-stress tensor in a heat-sensitive ceramic hollow cylinder 
as a function of the r~tdial coordinate 0. For the cases considered the axial components of the stress tensor are the 

Table I 

P2 Bil; Bi2 

0,1; 10 1; 1 10; 0,1 

2 -2954 -5476 -787 
4 -2465 -4542 -775 
6 -2260 -4 108 -770 



162 

J 

% 
-~r ~Zl I z 

V. I. G r o m o v y k  and Ye. G. Ivanik 

u 

I 

~ _  -% 

, j '  

.r I p 

Fig. 1. 

, \  2 

**Z.~ 

/ 
u l  j ~- P ,,. ,y p 

Fig. 2. Fig. 3. 

largest in absolute value, exceeding the radial and circumferential components on average by factors of 40 and 8, 
respectively. Whereas the radial component of the stress tensor increases as the external radius increases, the 
circumferential and axial components decrease, irrespective of the combinations of values of the heat-transfer 
coefficients from the boundat T surfaces. All the components of the stress tensor increase when the heat transfer 
from the internal surface (Bi 0 decreases and there is a simultaneous increase in the heat transfer from the external 
surface (Bi2). 

The normal radial stresses are tensile stresses and, despite the fact that they are a number of times less than 
the values of the peripheral and axial components of the stress tensor, which are compressive, it is they that are 
responsible for the strength properties of the structure as a whole. 

We will carry out a more detailed analysis of the stresses. As calculations show, the radial, normal and axial stresses 
reach an extremum, and the extremal stresses opmax (tensile) and o~(compress ive )  are reached at the points p 
= p.r and p ffi p.~ which satisfy the following transcendental equations 

o-p  )P;r =0 
pL )+ 

Figure 4 illustrates the behaviour of the points of the extremum P*r of the radial normal stresses as a function 
of the parameter I)2, which represents the ratio of the external and internal radii. The points where the radial stresses 
are a maximum for P2 = 2 for all the combinations of the heat-exchange coefficients Bil and Bi2 and the values 
of  0 considered lie in the range 1.33 ~< p ~< 1.39. When the external radius is increased by a factor of three this 
range expands almost sixfold; the points of extremum themselves shift towards the external surface of the cylinder, 
and this displacement occurs more rapidly when 0 = 0.2 (the external surface is cooled; curves 1 in Fig. 4), then, 
for example, in the case when 0 = 5 (curves 2). 

Note that when solving the thermoelastic problem for a circular cylinder made of a reinforced layered material, 
an appro~nate formula was established in [12] for finding the points of extremum of normal radial stresses. Unlike 
[12], in the case considered here the relation which enables us to find these points does not contain the values of 
the external and internal radii explicitly; it also contains quantifies which define the heat-exchange conditions on 
the boundary surfaces, characterized by the parameter tz 

In Fig. 5 we show a graph of  the dimensionless stress o~ax. The maximum radial stresses increase practically 
linearly as the external radius increases, and they reach a ~ u m  level for values of the heat-exchange coeff~ents 
Bil = 0.1 and Bi2 = 10. 
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